
www.bsa.org

BSA | The Software Alliance has always prioritized improving software security. That is why BSA
developed the BSA Framework for Secure Software and the first priority in the BSA 2023 Global
Cyber Agenda is software security. Adopting memory-safe languages presents an opportunity to
improve software security, but only if done thoughtfully, which is why BSA supports a policy of
strategic adoption.

Background & Context

Programming Languages
Software that businesses and government agencies rely
on to deliver services to their customers and citizens is
written in programming languages. Software developers
use different languages for different applications and
programs. For example, software developers often use
Python for artificial intelligence and machine learning;
JavaScript for web development; Java or C# for
enterprise applications; R for data analysis; and C,
C++, or Rust for systems programming.

Decisions about which programming language to
use are complicated and require the consideration of
numerous variables, including performance, scalability,
maintainability, developer availability, compatibility,
and cost. Moreover, many software projects are built
upon existing code bases that may be years or decades
old. These projects often must adopt programming
languages used in the existing code base. Further,
many of these code bases draw upon third-party (often
open-source) libraries, in which programming language
decisions are made by those managing the software
projects.

Memory Safety
When DARPA created the Internet, it could not know and
address all potential security challenges. Similarly, when
software developers created programming languages,
they could not know and address all future security
challenges, let alone appreciate that nearly every person
and billions of devices would connect to the Internet.
The result is that some languages, unfortunately, are not
“memory safe”—that is, malicious actors have developed
ways to access the memory of software developed using
these languages.

Software developers address the risks associated with
programming languages that are not memory safe in
multiple ways, including using secure development
practices generally, applying static and dynamic security
analysis and testing tools, and enabling compiler
features. Although no security control can guarantee
absolute security, these efforts can significantly improve
the security of software that uses languages that are not
memory safe.

Memory Safety:
A CALL FOR STRATEGIC ADOPTION

http://www.bsa.org

Acknowledging Our Current Situation
Today, if a software developer were starting with a blank
screen, the software developer would strongly consider
using a memory-safe language. But that is not the world
we live in. We are not starting from a blank screen.
We use billions, if not trillions, of lines of code written
in languages that are not memory safe. Additionally,
many of these lines of code are in some of the most
foundational pieces of software, like the Linux kernel
that serves as a bridge between a computer’s hardware
and the applications and programs it runs, further
complicating the process of converting programming
languages.

We must develop policies that acknowledge this
situation, while charting a path toward a more secure
future. Regarding memory-safe languages, the policy
most likely to result in that future is a policy of strategic
adoption.

Challenges to Adopting
Memory-Safe Languages

If adopting memory-safe languages is an opportunity
to improve security, why not simply require all software
producers and government agencies to convert code?
Simply put, broad conversion requirements may be
impractical and will likely be suboptimal. Despite
the long-term benefits of converting to memory-safe
languages, those benefits may be outweighed if not
done strategically.

Further, many software producers that use secure
software development practices have already scanned
and mitigated risks associated with memory safety.

Strategic adoption will require
action by the entire software
ecosystem, including the open
source software community,
software producers, and software
customers.

Converting Software Creates Risks
The process of converting software to a memory-safe
language might, inadvertently, introduce new bugs. As
the US National Cybersecurity Strategy states, “even
the most advanced software security programs cannot
prevent all vulnerabilities.” Consequently, policymakers
should expect that converting trillions of lines of code
to memory-safe languages will reduce vulnerabilities
associated with memory safety but create risks associated
with other vulnerabilities in the new code.

Another challenge when converting software is that
broadly used languages benefit from a wide and deep
set of analysis tools that memory-safe languages may
not have today. The consequence is that code written
in memory-safe languages may be memory safe, but
software developers may face other challenges related to
analyzing and securing the new code.

Other Activities May Offer a Better Return
on Investment
Products and services that have not yet implemented
other cybersecurity best practices would likely benefit
more from adopting those best practices than converting
to a memory-safe language. For example, implementing
multifactor authentication or encrypting data at rest
and in transit would likely be better investments than
converting to a memory-safe language. Another
consideration is compensating controls. For example,
using C++ compiler memory safety protections (even
if only in the short run) may be a better investment
in cybersecurity than converting to a memory-safe
language. Similarly, a threat model may demonstrate
that different uses, for example a mobile application or a
cloud service, face different threats.

Ultimately, a software producer should make a risk-
based decision about where to invest cybersecurity
resources, whether it be implementing best practices,
using compensating controls, or adopting memory-safe
languages.

Successful Adoption Requires the Entire
Software Ecosystem
Strategic adoption will require action by the entire
software ecosystem, including the open source software
community, software producers, and software customers.
Open source projects that use languages that are not
memory safe will need to actively manage risks to

www.bsa.org

http://www.bsa.org

memory safety. And if a software producer adopts a
memory-safe language for an application, a customer
may need to update its version of the application. This
challenge may seem minimal, but experience tells us
that customers are often slow to update software—and
sometimes for good reasons (e.g., operational constraints
to a customer’s systems dictate that the customer can
only update the software periodically).

Resources Are Finite
Every organization, including government agencies,
should understand that resources to improve
cybersecurity are finite. Resources an organization uses
to adopt memory-safe language are then not available
to address known exploitable vulnerabilities in an
application, implement multi-factor authentication, or
invent the next security technology needed to protect
against evolving threats.

This challenge might be even more pervasive when
considering human resources. As the Office of the
National Cyber Director stated in its Requests Insight and
Expertise on Cyber Workforce, Training, and Education,
we continue “to face a significant shortfall in cyber
talent.” Today, there are simply not enough software
developers, let alone software developers trained in
secure software development practices or programming
languages appropriate to replace languages that are not
memory safe. Policymakers should expect that software
developers switching languages will, at least for a time,
be less productive and more likely to write suboptimal
(i.e., less secure, reliable, and performant) code.

Strategic Adoption

Given the challenge of converting trillions of lines of
code, policymakers should adopt a policy of strategic
adoption, or a policy that:

Requires Active Risk Management
It is simply not possible to convert all software
immediately or simultaneously. This fact, in conjunction
with the challenges identified above, highlight the
need for software producers, as well as government
agencies that develop software, to make risk-based
decisions about how to prioritize adopting memory-
safe languages. Software producers and government
agencies should consider the benefits of adopting

memory-safe languages, with the goal of using memory-
safe languages or otherwise addressing vulnerabilities
associated with memory safety.

Policymakers should require software producers and
government agencies to take a risk-based approach to
implementing compensating controls like using secure
development practices generally, applying static and
dynamic memory-safety tools, and enabling compiler
features, as well as converting software to memory-safe
languages lest the conversion create new and worse
cybersecurity vulnerabilities.

Sets a Bold but Achievable Path to a More
Secure Future
Policymakers should set the bold vision of ultimately
using only memory-safe languages for new software
programs. Because the digital ecosystem currently uses
trillions of lines of code that software producers have
not yet converted to memory-safe languages, software
producers and government agencies will need to
continue using those languages both to update security
of old code and for interoperability with new code.
But policymakers can set a bold vision of a software
ecosystem that responsibly moves away from languages
that are not memory safe.

Prioritizes New Code
Decisions about how to manage the risks associated
with languages that are not memory safe should be risk
based. Prioritizing writing new programs in memory-
safe languages over transitioning existing programs
into memory-safe languages is likely to produce better
security for the same investment. Prioritizing newly
written code will allow software producers to make risk-
based decisions about applying compensating controls
to software written in languages that are not memory
safe, while training more software developers, and
building more tools to improve coding in memory-safe
languages.

Decisions about how to manage
the risks associated with
languages that are not memory
safe should be risk based.

www.bsa.org

http://www.bsa.org

Invests in Research and Development
Research projects aimed at automating the transition
from one programming language to another show
promise. If these programs can effectively transition
from one programming language to another without
introducing either security or functionality issues, the
entire digital ecosystem would benefit. Governments
around the world should both increase investment and
direct existing investment toward projects aimed at
accomplishing this important goal.

Provides Training and Support
Today, many software developers have neither trained
in nor have gained experience with memory-safe
languages, which will make coding slower and errors
more likely. Government support of private sector and
academic training can provide the workforce necessary
to manage and execute the policy of strategic adoption.
For example, governments should consider requiring and
incentivizing educational institutions that train software
developers to ensure that they train their students in
memory-safe languages.

Deploys Incentives
Many software producers are already managing the risk
associated with using languages that are not memory
safe. But policymakers can and should incentivize
companies and government agencies to implement
the policy of strategic adoption. Policymakers should
also consider how they will incentivize customers to
update software after a software producer has adopted
a memory-safe language or otherwise managed the risk
associated with using a language that is not memory
safe. They should also consider how they might
recognize software producers that are successfully
implementing the policy of strategic adoption, including
through procurement preferences.

Leads by Example
Government agencies should lead by example by, for
example, taking a risk-based approach and prioritizing
new code that they or their contractors write. Some
programs written by agencies and their contractors may
be low-risk, whereas others, like software used in critical
infrastructure systems like the healthcare and public
health or water and wastewater sectors, may be high-
risk and require prioritization. Lawmakers should require
government agencies to lead, and should implement
the same policy of strategic adoption that private sector
software producers will undertake.

Conclusion

None of the challenges identified above justify
unreasonable delay in government agencies and
private sector software producers adopting memory-
safe languages. However, imposing fixed timelines
that do not support strategic adoption risks harming
the digital ecosystem such a policy would hope to
help. Rather, policymakers should support a policy of
strategic adoption that requires active risk management;
sets a bold but achievable path to a more secure
future; prioritizes new code; invests in research and
development; provides training and support; deploys
incentives; and directs government agencies to lead by
example.

www.bsa.org

Government support of private
sector and academic training can
provide the workforce necessary
to manage and execute the
policy of strategic adoption.

http://www.bsa.org

